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Dynamics of crossover from a chaotic to a power-law state in jerky flow
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We study the dynamics of an intriguing crossover from a chaotic to a power-law state as a function of strain
rate within the context of a recently introduced model that reproduces the crossover. While the chaotic regime
has a small set of positive Lyapunov exponents, interestingly, the scaling regime has a power-law distribution
of null exponents which also exhibits a power law. The slow-manifold analysis of the model shows that while
a large proportion of dislocations are pinned in the chaotic regime, most of them are pushed to the threshold of
unpinning in the scaling regime, thus providing an insight into the mechanism of crossover.
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The Portevin Le-Chatelier~PLC! effect @1#, or the jerky
flow, is a rare example where the complex spatiotempo
dynamics results from the collective behavior of particip
ing defects, namely, dislocations@2#. When samples~usually
thin strips! of dilute alloys are subjected to constant stra
rate deformation in a window of applied strain rates (ėa) and
temperatures, one finds repeated stress drops~or yield drops!.
Each stress drop is associated with the formation of a ban
dislocations. At low strain rates, the bands are static nucl
ing randomly in space. At intermediateėa , bands nucleate
one ahead of the other in a hopping manner. At high str
rates, bands propagate continuously. The bands found in
ferent regimes of strain rates are considered to be diffe
correlated states of dislocations within the bands@3#.

A classical explanation of the jerky flow is through d
namic strain aging@2#. At small velocities of dislocations~or
ėa), solute atoms have sufficient time to diffuse to disloc
tions, and pin them. The longer they are arrested, the larg
the stress required to unpin them. As the stress increa
dislocations get unpinned and move fast till they are ag
pinned due to diffusing solutes and other pinning cente
The process repeats itself. Further, the competition betw
the time scales associated with diffusion and dislocation m
bility translates, at the macroscopic level, to a negative st
rate sensitivity of the flow stress. This intermittent seque
of loading and unloading, and the negative flow rate se
tivity are typical features of many stick-slip situations su
as fault dynamics@4#, frictional sliding@5# and peeling of an
adhesive tape@6#, and charge density waves@7,8#. ~Indeed,
the similarity of the PLC effect with charge density wav
has been studied in detain in Ref.@8#.! The power-law statis-
tics of stress drops@3,9# at high ėa is similar to those in
earthquakes@4# and many other power-law systems@10,11#,
which however are seen atlow drives.

This rich spatiotemporal dynamics has defied a pro
understanding due to the lack of techniques to describe
collective behavior of dislocations@2#. Recent studies using
nonlinear dynamical methods have shown that a rich bod
dynamical correlations is hidden in the stress-strain curve
jerky flow @12#. More recently,an intriguing crossoverfrom
a chaotic to a power-law regime has been observed a
function of strain rate@9,3#. As the crossover is seen in
single crystal and polycrystals, it appears to be insensitiv
the microstructure.
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This crossover is unusual in a number of ways. First, i
a rare example of a transition between two dynamically d
tinct states. Chaos is characterized by the self-similarity
the attractor and the sensitivity to initial conditions arisi
from a few degrees of freedom. In contrast, power laws
scale-free and are infinite dimensional. Thus, most syst
exhibit either of these regimes. To the best of our knowled
this is one of the two experimental situations where both
seen in the same system, the other being in the hydro
namic turbulence@13#. Second, the power law in the PLC
effect ~as also in turbulence! is observed athigh drive rates.
On the other hand, power laws observed in varied syste
usually seen inslowly drivendissipative systems, are con
ventionally explained by invoking the concept of se
organized criticality~SOC! @10,11,14#. Thus, one suspect
that the dynamical features of the power law here to
closer to turbulence than the conventional SOC systems

Recently, we have succeeded in explaining this crosso
in the dynamics of the PLC effect by extending the dynam
cal model for the PLC effect due to Ananthakrishna and
workers@15,16#. The extended model also explains the thr
types of dislocation bands observed with the increas
strain rate@17#. However, the dynamics of the crossover h
not been elucidated. A natural tool for characterizing t
crossover is to follow the Lyapunov spectrum as a funct
of strain rate. This will be supplemented by the slo
manifold approach@18,19# that allows us get a geometrica
picture of the changes occurring in the configuration of d
locations during crossover.

We shall briefly describe the extended dynamical@16#
model. The original dynamical model@15# captures the well
separated time scales implied in dynamic strain aging
using the fast mobilerm(x,t), immobiler im(x,t), and Cot-
trell types of dislocationsrc(x,t). Then, all qualitative fea-
tures of the effect emerge due to a nonlinear interaction
these populations, assumed to represent collective degre
freedom. In spite of the idealized nature of the model, it h
been successful in explaining several generic features of
effect, notably—the occurrence of the effect in a window
strain rates~or temperatures! and the emergence of negativ
strain rate sensitivity of the flow stress@15,18#. The model
also predictschaotic stress drops@20# that have been subse
quently verified by analyzing experimental signals@9,12#,
©2003 The American Physical Society04-1



ve
tie

e

ue

a
e
e
d
le
ol

s
n

al
t

r-
fo
s
c

in

s

ow
o
h
t
e

an
tio

-
lec-

a
ne

ng
est-
as

is
tep

ed
the

the
high
set

e
into

sta-

r
pec-

e

ven

is

,
ov

in-
but
-
the

RAPID COMMUNICATIONS

M. S. BHARATHI AND G. ANANTHAKRISHNA PHYSICAL REVIEW E 67, 065104~R! ~2003!
and hence has the right framework to model the crosso
The equation of motion of the scaled dislocation densi
@15,18# rm(x,t), r im(x,t), andrc(x,t) are given by

ṙm52b0rm
2 2rmr im1r im2arm1fe f f

m rm1~D/r im!

3@fe f f
m ~x!rm#xx , ~1!

ṙ im5b0~b0rm
2 2rmr im2r im1arc!, ~2!

ṙc5c~rm2rc!. ~3!

The overdot and the subscriptx refer to the time and spac
derivatives, respectively. The first term in Eq.~1!, b0rm

2 ,
refers to the immobilization of two mobile dislocations d
to the formation of locks,rmr im to the annihilation of a
mobile dislocation with an immobile one,r im to the remobi-
lization of the immobile dislocation due to stress or therm
activation, andarm represents the immobilization of mobil
dislocation due to the aggregation of solute atoms. Onc
mobile dislocation starts acquiring solute atoms, we regar
as the Cottrell typerc . These eventually become immobi
as more solute atoms aggregate. The aggregation of s
atoms can be regarded as the definition ofrc , i.e., rc

5*2`
t dt8rm(t8)exp@2c(t2t8)#. ~See Ref.@18#.! fe f f

m rm re-
fers to the rate of production of dislocations due to cro
glide. This depends on the velocity of mobile dislocatio
taken to beVm(f)5fe f f

m , wherefe f f5(f2hAr im) is the
scaled effective stress,f the scaled stress,m the velocity
exponent, andh a work hardening parameter. In the origin
model, cross slip has been used as a source of disloca
multiplication which, however, is intrinsically nonlocal. Du
ing cross-slip dislocations, leave the slip plane due to,
instance, the effect of repulsive internal stresses and then
back onto the slip plane. This mechanism transports dislo
tion densities through space. This is known to lead to
‘‘diffusive-type’’ coupling @2#. Let Dx be an elementary
length. Then, the fluxF(x) flowing from x6Dx and out of
x is given by F(x)1(p/2)@F(x1Dx)22F(x)1F(x
2Dx)#, whereF(x)5rm(x)fe f f

m (x). Here, p is the prob-
ability of spreading into neighboring elements. Expand
F(x6Dx) up to the leading terms, we getrmfe f f

m

1(p/2)@]2(rmfe f f
m )/]x2#(Dx)2. Since cross slip spread

only into regions of minimum back stress arising fromr im

ahead of it, we useDx25^Dx2&5 r̄ 2r im
21 . Here,^ & refers to

the ensemble average andr̄ is an elementary~dimensionless!
length with D5pr̄2/2. The scaled constants,a, b0, and c
refer, respectively, to the concentration of solute atoms sl
ing down the mobile dislocations, the reactivation of imm
bile dislocations, and the diffusion rate of solute atoms. T
orders of magnitudes of these constants are known from
basic mechanisms and their correspondence with experim
tal quantities@18#. Defining ė, d, and l as the scaled strain
rate, effective modulus of the machine and the sample,
length of the sample, respectively, the machine equa
reads
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ḟ5dF ė2~1/l !E
0

l

rm~x,t !fe f f
m ~x,t !dxG . ~4!

Global coupling in Eq.~4! is similar to the studies on space
charge currents in semiconductors where the integrated e
tric field balances the applied voltage.

In the domain of the crossover parameterė, our earlier
analysis@18,19# shows that the effect is observed between
forward Hopf bifurcation at low strain rate and a reverse o
at high ė. The reverse Hopf bifurcation implies decreasi
amplitudes of stress drops as in experiments. All the inter
ing dynamics, including chaos, is seen in this regime,
shown in Refs.@18,19#.

We discretize the specimen length intoN equal parts, and
solve forrm( j ,t), r im( j ,t),rc( j ,t), j 51, . . . ,N, andf(t).
Due to the widely differing time scales, appropriate care
taken in the numerical solutions by using a variable s
fourth-order Runge-Kutta scheme with an accuracy of 1026

for all the variables. The spatial derivative is approximat
by its central difference. The initial values are taken as
steady state values for the variables~as the long term evolu-
tion does not depend on the initial values! with a Gaussian
spread along the length of the sample. In experiments,
ends of the sample have large strains induced due to
stress concentrations at the grips. To mimic the strain, we
r im( j ,t), j 51, andN to values two orders higher than th
rest of the sample. Further, as bands cannot propagate
the grips, we userm( j ,t)5rc( j ,t)50 at j 51 andN. For the
numerical work, we usea50.8, b050.0005, c50.08, d
50.000 06,m53.0,h50, andD50.5. However, the results
hold true for a wide range of parameters values in the in
bility domain including that ofD. For these values, the PLC
effect is seen in the range 10, ė,2000. Chaotic and powe
law regimes are seen at low and high strain rates, res
tively @16#.

We identify the chaotic regime by calculating th
Lyapunov exponents,l i ( i 51, . . . ,M53N11), using Eqs.
~1!–~4!. ~The various systems sizes studied fromN
5100–3333 show a rapid convergence of the results e
around 300.! The largest Lyapunov exponentl1 is obtained
by averaging over 15 000 time steps after stabilization.l1

becomes positive atė535, reaching a maximum atė
5120, and practically vanishes around 250.„See Fig. 3~a! of
Ref. @16#. Periodic states are seen prior to chaos.… In the
chaotic region, the distribution of Lyapunov exponents
quite broad. A plot forė5120 is shown Fig. 1~a!. Of these,
only 6.2% ofM (51051) are positive. Asė increases to 280
concomitant with the decrease in the maximum Lyapun
exponent to a small value'5.231024, the number of null
exponents~almost vanishing! increases graduallyreaching a
value '0.38M in the range@20.000 52,0.000 52# ~com-
pared to only a few forė5120). Forė>250, below a reso-
lution ;1024, even as the first few exponents are dist
guishable, most cross each other as a function of time,
the ~time averaged! distribution remains unaffected. The fi
nite density of null exponents has a peaked nature in
4-2
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interval 250<ė<700. A plot is shown in Fig. 1~c! for ė
5280 which can be fitted to a power lawD(ulu);ulu2g as
shown in Fig. 1~c! with g50.6. It may be pertinent to stat
here that the uncorrelated bands and hopping bands are
in the chaotic regime, while the continuously propagat
bands are seen at high strain rate@17#.

As yield drops are caused by the unpinning of dislo
tions from the pinned configuration, we first need to ident
these configurations. This can be done by using the sl
manifold approach. Here, we recall some relevant res
@18,19# on the slow manifold of the original model (D50)
for further use whenDÞ0. The slow manifold expresses th
fast variable in terms of the slow variables, conventiona
done by setting the derivative of the fast variable to z
@18,19#. Here,ṙm50 givesrm5rm(r im ,f). Instead, we use
rm in terms of a single slow variabled5fm2r im2a. We
note thatd takes on small positive and negative values, sin
both r im and f are small and positive. Usingṙm

5g(rm ,f)52b0rm
2 1rmd1r im50, and noting thatrm

.0, we get two solutionsrm5@d1(d214b0r im)1/2#/2b0,
one ford,0 and anotherd.0. For regions ofd,0, since
b0 is small ;1024, we getrm /r im'21/d which takes on
small values defining a part of the slow manifold,S2. Since
physically pinned configuration of dislocations implies sm
mobile density and large immobile density, we refer to t
region of S2 as the ‘‘pinned state of dislocations.’’ Furthe
larger negative values ofd correspond to strongly pinne
configurations, as they refer to a smaller ratio ofrm /r im .
Corresponding tod.0, another connected pieceS1 is de-
fined by large values ofrm , given byrm'd/b0, which we
refer to as the ‘‘unpinned state of dislocations.’’S2 and S1
are separated byd50, which we refer to as thefold line
@18,19# ~see below!. A plot of the slow manifold in thed-rm
plane is shown in Fig. 2~a! along with a simple monoperiodi
trajectory describing the changes in the densities during
loading-unloading cycle. The inset showsrm(t) and f(t).
For completeness, the corresponding plot of the slow m
fold in the (rm ,r im ,f) space is shown in Fig. 2~b!, along
with the trajectory and the symbols. Note thatS2 andS1 are
separated byd5fm2r im2a50, and hence the name fol
line. In Fig. 2~a!, as the trajectory entersS2 at A and moves
into S2 , d takes a maximum negative value atB. Then,d
increases as the trajectory returns toA8 before leavingS2.
The corresponding segment isABA8 in Fig. 2~b!, which is
identified with the flat region ofrm(t) in the inset of Fig.

FIG. 1. ~a! Distribution of the Lyapunov exponents atė5120

for M51051. ~b! and ~c! Distribution of the null exponents atė
5280 for M510 000. In~c! ‘‘ 1 ’’ refers to positive and ‘‘d ’’ to
negative null Lyapunov exponents.
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2~a!. As the trajectory crossesd50, ]g/]rm becomes posi-
tive and it accelerates into the shaded region@Fig. 2~a!# rap-
idly till it reaches rm5d/2b0. Thereafter, it settles down
quickly onS1 decreasing rapidly till it reentersS2 again atA.
The burst inrm @inset in Fig. 2~a!# corresponds to the seg
mentA8DA in Figs. 2~a! and 2~b!.

Now consider the stress changes as the state of the sy
goes though a burst of plastic activity. ForD50, Eq. ~4!

reduces toḟ5d@ ė2 ėp#, whereėp5fmrm defines the plas-
tic strain rate. Sincerm is small and nearly constant atS2,
stress increases monotonically. However, during the burs
rm (A8DA in the inset!, ėp(t) exceedsė leading to an yield
drop. Sincerm grows outsideS2 , d50 separates the pinne
state from the unpinned state, and henced50 physically
corresponds to the value of the effective stress at which
locations are unpinned.

Now, we extend the slow-manifold analysis to the ca
when spatial couplingDÞ0 to study the changes in the sp
tial configuration of dislocations as we go from the chaotic
scaling regime. Usingh50,fe f f5f, the plastic strain rate
ėp(t)5fm(t)(1/l )*0

l rm(x,t)dx5fm(t) r̄m(t), where r̄m(t)
is the mean mobile density@5( jrm( j ,t)/N#. Thus, the yield
drop is controlled by the spatial averager̄m(t) and not by
individual values ofrm( j ). Since the yield drop occurs whe
r̄m(t) grows rapidly, it is adequate to examine the spa
configurations on the slow manifold at the onset and at
end of typical yield drops. Figures 3~a!, and 3~b! and 3~c!
and 3~d! show, respectively, the plots ofj ,d( j ),rm( j ) for the
chaotic stateė5120 and the power-law stateė5280, at the
onset and at the end of an yield drop. It is clear that foė
5120, both at the onset and at the end of a typical la
yield drop@Figs. 3~a! and 3~b!#, mostrm( j )’s are small with
large negative values ofd( j ), i.e., most dislocations are in
strongly pinned state. The arrows show the increase inrm( j )
at the end of the yield drop. In contrast, in the scaling
gime, for ė5280, most dislocations are at the threshold
unpinning withd( j )'0, both at the onset and the end of th
yield drop @Figs. 3~c! and 3~d!#. This also implies that they
remain close to this thresholdall the time@Fig. 3~d!#. Since
d( j )'0 ~for most j ’s! refers to a marginally stable state,
can produce almost any response. This in turn implies
the magnitudes of yield dropsDf are scale-free. We hav
verified that the edge-of-unpinning picture is valid in th
entire scaling regime for a range ofN5100–1000. Further,

FIG. 2. ~a! Bent slow manifoldS1 and S2 ~thick lines! with a

simple trajectory forė5200 andm53. Inset:rm ~dotted curve!
andf. ~b! Same trajectory in the (f,r im ,rm) space.
4-3
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the number of spatial elements reaching the threshold of
pinningd50 during an yield drop increases as we approa
the scaling regime.

Several comments may be in order on the dynamics of
crossover. First, the crossover itself is smooth as the cha
in the Lyapunov spectrum are gradual. Second, the po
law here is of purely dynamical origin. This is a result of t
reverse Hopf bifurcation at high strain rates which limits t
average stress drop amplitude to small values@18,19#. Third,
our analysis shows that the power-law regime of stress d
occurring at high strain rates belongs to a different univ
sality class as it is characterized by a dense set of null ex
nents. As zero exponents correspond to a marginal situa
their finite density physically implies that most spatial e
ments are close to criticality. This is supported by the g
metrical picture of the slow manifold, where most disloc

FIG. 3. Dislocation configurations on the slow manifold at t

inset and at the end of an yield drop:~a! and~b! for ė5120~chaos!,

and ~c! and ~d! for ė5280 ~scaling!.
in
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tions are at the threshold of unpinning,d50. In contrast,
going by the few reports, the marginal nature of conventio
SOC models does not display any characteristic feature
the Lyapunov spectrum@21#. ~For instance, no zero and pos
tive exponents, a positive and zero exponent, zero expo
in the large-N limit, etc., have been reported@21#.! More
significantly, the dense set of null Lyapunov exponents the
selves follow a power law. Further, we note that t
Lyapunov spectrum evolves from a set of both positive a
negative, but few null exponents in the chaotic region, to
dense set of marginal exponents as we reach the power
regime. Thus, the dense set of null exponents in our mod
actually similar to that obtained in shell models of turbulen
where the power law is seen at high drive values@22#. How-
ever, there are significant differences. First, we note that
shell model@22# cannot explain the crossover as it is on
designed to explain the power-law regime. Further, the ma
mum Lyapunov exponent is large for small viscosity para
eter,n, (l1}/n1/2) in shell models@22# in contrast to near-
zero value in our model.

In conclusion, we have demonstrated that the change
the Lyapunov spectrum provides a good insight into the
namical mechanism controlling the crossover. The slo
manifold analysis, applied to study the crossover, is parti
larly useful in giving a geometrical picture of the spati
configurations in the chaotic and scaling regimes. This p
ture explains the origin of small amplitude stress drops
high strain rates. Finally, this presents a fully dynamic
model which exhibits a crossover from a chaotic to a pow
law regime and should be of interest to the area of dynam
systems.

This work was supported by the Department of Scien
and Technology, New Delhi, India.
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