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We study the dynamics of an intriguing crossover from a chaotic to a power-law state as a function of strain
rate within the context of a recently introduced model that reproduces the crossover. While the chaotic regime
has a small set of positive Lyapunov exponents, interestingly, the scaling regime has a power-law distribution
of null exponents which also exhibits a power law. The slow-manifold analysis of the model shows that while
a large proportion of dislocations are pinned in the chaotic regime, most of them are pushed to the threshold of
unpinning in the scaling regime, thus providing an insight into the mechanism of crossover.
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The Portevin Le-ChateliefPLC) effect[1], or the jerky This crossover is unusual in a number of ways. First, it is
flow, is a rare example where the complex spatiotemporah rare example of a transition between two dynamically dis-
dynamics results from the collective behavior of participat-tinct states Chaos is characterized by the self-similarity of
ing defects, namely, dislocatiofig]. When samplesusually  the attractor and the sensitivity to initial conditions arising
thin stripg of dilute alloys are subjected to constant straing.om 4 few degrees of freedom. In contrast, power laws are
rate deformation in a window of applied strain rateg)(and  scale-free and are infinite dimensional. Thus, most systems

temﬁeratures, one finds repeated ztrﬁssf dampgeld dfrops. eﬁ<hibit either of these regimes. To the best of our knowledge,
Each stress drop is associated with the formation of a band is is one of the two experimental situations where both are

dislocations. At low strain rates, the bands are static nucleat- . S
, , , O seen in the same system, the other being in the hydrody-
ing randomly in space. At intermediatg, bands nucleate

one ahead of the other in a hopping manner. At high strai namic turbulence13]. Second, the power law in the PLC
rates, bands propagate continuously. The bands found in di _ﬁe;:r't](astﬁlsor:n tgrbulenc)els obse[;ved aglgh dr|yedratest
ferent regimes of strain rates are considered to be differe N he other hand, power 1aws observed n varied systems,
correlated states of dislocations within the baf@ls usually seen irslowly drivendissipative systems, are con-
A classical explanation of the jerky flow is through dy- Ventionally explained by invoking the concept of self-

namic strain agingi2]. At small velocities of dislocationtor ~ Organized criticality(SOQ [10,11,14. Thus, one suspects
éa), solute atoms have sufficient time to diffuse to disloca-that the dynamical features of the power law here to be
tions, and pin them. The longer they are arrested, the larger [0S€" tO turbulence than the conventional SOC systems.
the stress required to unpin them. As the stress increases, RECeNtly, we have succeeded in explaining this crossover
dislocations get unpinned and move fast till they are agaid the dynamics of the PLC effect by extending the dynami-
pinned due to diffusing solutes and other pinning centers¢@l model for the PLC effect due to Ananthakrishna and co-
The process repeats itself. Further, the competition betweefforkers[15,16. The extended model also explains the three
the time scales associated with diffusion and dislocation motypes of dislocation bands observed with the increasing
bility translates, at the macroscopic level, to a negative straigtrain ratef17]. However, the dynamics of the crossover has
rate sensitivity of the flow stress. This intermittent sequencéiot been elucidated. A natural tool for characterizing the
of loading and unloading, and the negative flow rate sensierossover is to follow the Lyapunov spectrum as a function
tivity are typical features of many stick-slip situations suchof strain rate. This will be supplemented by the slow-
as fault dynamic$4], frictional sliding[5] and peeling of an manifold approach18,19 that allows us get a geometrical
adhesive tap¢6], and charge density wav¢g,8]. (Indeed, picture of the changes occurring in the configuration of dis-
the similarity of the PLC effect with charge density waves|ocations during crossover.
has been studied in detain in REB_&].) The power-law statis- We shall briefly describe the extended dynamifhs]
tics of stress drop$3,9] at high €, is similar to those in model. The original dynamical modgl5] captures the well
earthquake$4] and many other power-law systeiii0,11], separated time scales implied in dynamic strain aging by
which however are seen biw drives. using the fast mobile,(x,t), immobile p;(x,t), and Cot-
This rich spatiotemporal dynamics has defied a propetrell types of dislocationg(x,t). Then, all qualitative fea-
understanding due to the lack of techniques to describe thiires of the effect emerge due to a nonlinear interaction of
collective behavior of dislocatior®]. Recent studies using these populations, assumed to represent collective degrees of
nonlinear dynamical methods have shown that a rich body ofreedom. In spite of the idealized nature of the model, it has
dynamical correlations is hidden in the stress-strain curves dfeen successful in explaining several generic features of the
jerky flow [12]. More recentlyan intriguing crossovefrom  effect, notably—the occurrence of the effect in a window of
a chaotic to a power-law regime has been observed as sirain rategor temperaturgsand the emergence of negative
function of strain ratgd9,3]. As the crossover is seen in a strain rate sensitivity of the flow stre§$5,18. The model
single crystal and polycrystals, it appears to be insensitive talso predicthaotic stress dropg20] that have been subse-
the microstructure. quently verified by analyzing experimental signf®12],
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and hence has the right framework to model the crossover. } ) [ "

The equation of motion of the scaled dislocation densities ¢$=d 6—(1/|)fopm(xyt)fﬁeff(xi)dx : (4)

[15118] pm(xat)1 plm(xat)a andpc(x1t) are g|Ven by

Pm=—bopi— Pmpim+ Pim—apm+ BLsPm* (Dl pim) Global coupling in Eq(4) is similar to the studies on space-
X[ (X)pe] 1) charge currents in semiconductors where the integrated elec-
ettt/ Pmboc tric field balances the applied voltage.

_ In the domain of the crossover parametgrour earlier
Pim= bo(boprzn—pmpim—pim-i- ape), (2 analysis[18,19 shows that the effect is observed between a

forward Hopf bifurcation at low strain rate and a reverse one

3) at high e. The reverse Hopf bifurcation implies decreasing
amplitudes of stress drops as in experiments. All the interest-
] ] ing dynamics, including chaos, is seen in this regime, as
The overdot and the subscriptrefer to the time and space ghown in Refs[18,19.
derivatives, respectively. The first term in Ed), bopy,, We discretize the specimen length iftcequal parts, and
refers to the immobilization of two mobile dislocations due splve for p,(j,t), pim(j.t).pc(it), i=1,... N, and¢(t).
to the formation of lockspmpiy, to the annihilation of a Due to the widely differing time scales, appropriate care is
mobile dislocation with an immobile ong;,, to the remobi-  taken in the numerical solutions by using a variable step
lization of the immobile dislocation due to stress or thermalfourth-order Runge-Kutta scheme with an accuracy ofé10
activation, andap, represents the immobilization of mobile for all the variables. The spatial derivative is approximated
dislocation due to the aggregation of solute atoms. Once By its central difference. The initial values are taken as the
mobile dislocation starts acquiring solute atoms, we regard isteady state values for the variables the long term evolu-
as the Cottrell typge.. These eventually become immobile tion does not depend on the initial valjiesith a Gaussian
as more solute atoms aggregate. The aggregation of soluégread along the length of the sample. In experiments, the
atoms can be regarded as the definition pgf, i.e., p.  ends of the sample have large strains induced due to high
=" dt pn(t)exgd —c(t—t")]. (See Ref[18].) ¢ipm re-  stress concentrations at the grips. To mimic the strain, we set
fers to the rate of production of dislocations due to cros;,(j,t), j=1, andN to values two orders higher than the
glide. This depends on the velocity of mobile dislocationsrest of the sample. Further, as bands cannot propagate into
taken to beVy,(¢) = ¢, where ¢eri=(d—hpim) is the  the grips, we usp(j,t)=pc(j,t)=0 atj=1 andN. For the
scaled effective stress) the scaled stressn the velocity  numerical work, we usea=0.8, by=0.0005,c=0.08, d
exponent, andh a work hardening parameter. In the original =0.00006,m=3.0,h=0, andD=0.5. However, the results
model, cross slip has been used as a source of dislocatidrold true for a wide range of parameters values in the insta-
multiplication which, however, is intrinsically nonlocal. Dur- bility domain including that ofD. For these values, the PLC

ing cross-slip dislocations, leave the slip plane due to, foeffect is seen in the range 4G:<2000. Chaotic and power
instance, the effect of repulsive internal stresses and then S||HW regimes are seen at low and h|gh strain rates, respec-
back onto the slip plane. This mechanism transports dislocajyely [16].

tion densities through space. This is known to lead to a e identify the chaotic regime by calculating the
“diffusive-type” coupling [2]. Let Ax be an elementary |yapunov exponentsy; (i=1, ... M=3N+1), using Egs.
length. Then, the fluxp(x) flowing fromx+Ax and out of  (1)—(4). (The various systems sizes studied froh

x is given by ®(x)+(p/2)[P(x+AX)-2P(X)+P(X  =100-3333 show a rapid convergence of the results even
—Ax)], where ®(x)=pn(x) pet(x). Here,p is the prob-  around 300. The largest Lyapunov exponehy is obtained
ability of spreading into neighboring elements. Expandingby averaging over 15000 time steps after stabilizatiop.

d(x=Ax) up to the leading terms, we gebmdeir  becomes positive ak=35, reaching a maximum at
+(p/2)[F*(pmeper)!x*](AX)?. Since cross slip spreads — 120, and practically vanishes around 288ee Fig. 8a) of
only into regions of minimum back stress arising frgmy,  Ref. [16]. Periodic states are seen prior to chpda. the
ahead of it, we us&x?=(Ax?)=r?p, 1. Here,() refersto  chaotic region, the distribution of Lyapunov exponents is

the ensemble average ands an elementarydimensionless  quite broad. A plot fore=120 is shown Fig. (). Of these,

length with D=pr?/2. The scaled constants, by, andc  only 6.2% ofM(=1051) are positive. Ag increases to 280,
refer, respectively, to the concentration of solute atoms sloweoncomitant with the decrease in the maximum Lyapunov
ing down the mobile dislocations, the reactivation of immo-exponent to a small value-5.2x 104, the number of null
bile dislocations, and the diffusion rate of solute atoms. Theexponentgalmost vanishingincreases graduallyeaching a
orders of magnitudes of these constants are known from thealue ~0.38V in the range[ —0.00052,0.000 5P (com-
basic mechanisms and their correspondence with experimepared to only a few foe=120). Fore=250, below a reso-

tal quantities/18]. Defining €, d, and| as the scaled strain lution ~107%, even as the first few exponents are distin-
rate, effective modulus of the machine and the sample, anduishable, most cross each other as a function of time, but
length of the sample, respectively, the machine equatiothe (time averageddistribution remains unaffected. The fi-
reads nite density of null exponents has a peaked nature in the

pPc=C(pm—pc)-
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FIG. 1. (a) Distribution of the Lyapunov exponents at 120 -4 2 §0 2
for M=1051. (b) and (c) Distribution of the null exponents at ) o )
=280 for M=10000. In(c) “ +" refers to positive and @” to FIG. 2. (a) Bent s_low manifoldS; and S, (thick lineg with a
negative null Lyapunov exponents. simple trajectory fore=200 andm=3. Inset:p,, (dotted curve

and ¢. (b) Same trajectory in thed, pim ,pm) Space.

interval 256<e=<700. A plot is shown in Fig. (t) for e  2(a). As the trajectory crosse$=0, dg/dp,, becomes posi-
=280 which can be fitted to a power lab(|\])~|\| Y as  tive and it accelerates into the shaded redigig. @] rap-
shown in Fig. 1c) with y=0.6. It may be pertinent to state idly till it reaches p,= 8/2b,. Thereafter, it settles down
here that the uncorrelated bands and hopping bands are seguickly onS, decreasing rapidly till it reentesS, again atA.

in the chaotic regime, while the continuously propagatingThe burst inp, [inset in Fig. Za)] corresponds to the seg-
bands are seen at high strain rpté]. mentA’DA in Figs. 2a) and 2b).

As yield drops are caused by the unpinning of disloca- Now consider the stress changes as the state of the system
tions from the pinned configuration, we first need to identifygoes though a burst of plastic activity. For=0, Eq. (4)
these configurations. This can be done by using the slowreduces top=d[e— ép], Wheregpzqgmpm defines the plas-
manifold approach. Here, we recall some relevant result§c strain rate. Since,, is small and nearly constant &,

[18,19 on the slow manifold of the original modeD(=0)  stress increases monotonically. However, during the burst in
for further use whe # 0. The slow manifold expresses the o (A'DA in the inset, ép(t) exceeds leading to an yield

fast variable in terms of the slow variables, conventionallyy.o5 sinc rows outsid 5=0 separates the pinned
done by setting the derivative of the fast variable to Zerostat% fromqmegunpinned si%é and hepni;eo physigally

[18,19. Here,p,=0 givesp,=pm(pim . #)- Instead, we use corresponds to the value of the effective stress at which dis-
pm in terms of a single slow variablé= ¢™—pin—a. We  |ocations are unpinned.

note thato takes on small positive and negative values, since  Now, we extend the slow-manifold analysis to the case
both p;, and ¢ are small and positive. Using,, When spatial couplind +#0 to study the changes in the spa-
=9(pm,P)=— boprzn-l- pmd+pim=0, and noting thatp,, tial configuration of dislocations as we go from the chaotic to
>0, we get two solutiongy,=[ 8+ (5°+4bgpim) 2)/2b,,  scaling regime. Usindi=0,¢.¢1= ¢, the plastic strain rate
one for 6<0 angl4anothe6>0. For regions 0f5<0, since  ey(t)= A1) (AN fLpm(X,t)dx= p™(t) prm(t), Where pp(t)

b is small ~10"", we getppy/pim~ —1/6 which takes on s the mean mobile densify==;pm(j,t)/N]. Thus, the yield
small values defining a part of the slow manifof}, Since drop is controlled by the spatial averagg(t) and not by

physically pinned configuration of dislocations implies small;,gividual values of(j). Since the yield drop occurs when

mobile density and large immobile density, we refer to the— () grows rapidly, it is adequate to examine the spatial
region of S, as the “pinned state of dislocations.” Further, Pmit) 9 pidly, q b

larger negative values o8 correspond to strongly pinned configurations on the slow manifold at the onset and at the
; 4 : end of typical yield drops. Figures(@, and 3b) and 3c)

configurations, as they refer to a smaller ratiopgf/ pin, - and 3d) show, respectively, the plots §fé(}).p(j) for the

Corresponding ta5>0, another connected pie& is de- ) V. Tesp Y P piot)),pm)

fined by large values of,,, given byp~ &/b,, which we chaotic states=120 and the power-law state=280, at the

refer to as the “unpinned state of dislocation§; andS,  onset and at the end of an yield drop. It is clear thatéor
are separated by=0, which we refer to as théold line =120, both at the onset and at the end of a typical large
[18,19 (see below. A plot of the slow manifold in thes-p,,  Yield drop[Figs. 3a) and 3b)], mostp,(j)’s are small with
plane is shown in Fig. (@) along with a simple monoperiodic large negative values a(j), i.e., most dislocations are in a
trajectory describing the changes in the densities during ongtrongly pinned state. The arrows show the increags i)
loading-unloading cycle. The inset shows,(t) and ¢(t). at the enql of the yield drop. In contrast, in the scaling re-
For completeness, the corresponding plot of the slow manigime, for e=280, most dislocations are at the threshold of
fold in the (o, pim,¢) space is shown in Fig.(B), along  unpinning withs(j)~0, both at the onset and the end of the
with the trajectory and the symbols. Note tt8tandS; are  yield drop[Figs. 3c) and 3d)]. This also implies that they
separated by= ¢"— p;,—a=0, and hence the name fold remain close to this thresholll the time[Fig. 3(d)]. Since
line. In Fig. 2a), as the trajectory entes, at A and moves §(j)=~0 (for mostj’s) refers to a marginally stable state, it
into S,, ¢ takes a maximum negative value Bt Then,§  can produce almost any response. This in turn implies that
increases as the trajectory returnsAtb before leavings,. the magnitudes of yield drops ¢ are scale-free. We have
The corresponding segmentABA’ in Fig. 2(b), which is  verified that the edge-of-unpinning picture is valid in the
identified with the flat region op,,(t) in the inset of Fig. entire scaling regime for a range Nf=100-1000. Further,
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tions are at the threshold of unpinning=0. In contrast,
going by the few reports, the marginal nature of conventional
SOC models does not display any characteristic feature in
the Lyapunov spectruf21]. (For instance, no zero and posi-
tive exponents, a positive and zero exponent, zero exponent
in the largeN limit, etc., have been reportg@1].) More
significantly, the dense set of null Lyapunov exponents them-
selves follow a power law. Further, we note that the
Lyapunov spectrum evolves from a set of both positive and
negative, but few null exponents in the chaotic region, to a
dense set of marginal exponents as we reach the power-law
regime. Thus, the dense set of null exponents in our model is
actually similar to that obtained in shell models of turbulence

FIG. 3. Dislocation configurations on the slow manifold at the where the power law is seen at high drive val{@2]. How-

inset and at the end of an yield drqj@) and(b) for €=120(chaos,
and (c) and (d) for e= 280 (scaling.

the number of spatial elements reaching the threshold of u
pinning §=0 during an yield drop increases as we approach

the scaling regime.

Several comments may be in order on the dynamics of thfﬁ,]
crossover. First, the crossover itself is smooth as the changes
in the Lyapunov spectrum are gradual. Second, the power
law here is of purely dynamical origin. This is a result of the
reverse Hopf bifurcation at high strain rates which limits the

average stress drop amplitude to small valdes19. Third,

our analysis shows that the power-law regime of stress dro
occurring at high strain rates belongs to a different univer
sality class as it is characterized by a dense set of null exp
nents. As zero exponents correspond to a marginal situati
their finite density physically implies that most spatial ele-
ments are close to criticality. This is supported by the geo-

n_

ever, there are significant differences. First, we note that the
shell model[22] cannot explain the crossover as it is only
designed to explain the power-law regime. Further, the maxi-
mum Lyapunov exponent is large for small viscosity param-
eter,v, (A ;o/v*?) in shell modeld22] in contrast to near-
zero value in our model.

In conclusion, we have demonstrated that the changes in
e Lyapunov spectrum provides a good insight into the dy-
namical mechanism controlling the crossover. The slow-
manifold analysis, applied to study the crossover, is particu-
larly useful in giving a geometrical picture of the spatial
configurations in the chaotic and scaling regimes. This pic-
tgre explains the origin of small amplitude stress drops at
igh strain rates. Finally, this presents a fully dynamical
model which exhibits a crossover from a chaotic to a power-

Oiéw regime and should be of interest to the area of dynamical

systems.
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